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This paper presents farmer’s optimization problem and how it relates to his or her deforestation behavior. 

The main technique used here is a stochastic control model solved by the Hamilton-Jacobi-Bellman (HJB) 

equation. The farmer’s capital accumulation is treated as a jump process approximated by the Poisson 

process. The control variables are assumed to be of Markovian type. The ARMA(1,1) deforestation model 

of this paper has given further insight into farmers’ deforestation and capital accumulation behavior. Of 

particular importance is how farmers’ attitude towards risks (and their precautionary motives of saving) 

affect these behaviors. A risk-taking farmer appears to be more likely to clear a forest than a risk-averting 

one. The result also shows the case where consumption optimalization may preclude further forest 

clearing. But given the limitations of the modeling, these results should be seen as only a part of a much 

more complex deforestation behavior. 
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INTRODUCTION 
 
 

In the previous study1, the deforestation model was built without reference to the 

farmer’s utility function. Consumption was set ex ante at a given subsistence level and 

no optimization was undertaken. While such an approach has produced a model 

capable of explaining the empirical results (Wibowo, D.H., Tisdell, C.A. and Byron, 

R.N., 1997), it would be desirable to see if these empirical results can also be 

explained by a model built on the basis of the farmer’s consumption optimization. For 

this reason, this paper will focus on the farmer’s optimization problem and how it 

relates to his or her deforestation behavior. The main technique used here is the 

stochastic control model which will be solved by the Hamilton-Jacobi-Bellman (HJB) 

equation. The farmer’s capital accumulation is treated as a jump process approximated 

by the Poisson process. The control variables are assumed to be of Markovian type. 

 

The main strategy adopted here is to first determine the optimal level of the control 

variable . As in Wibowo (2009), these controls represents the proportion of income 

allocated for consumption , income-generating expenses , and 

forest clearing expenses  The income residual (or saving) is given by 

, where  . The next step is to show that if the jump process does 

not occur in a given time interval, than the optimized will fall below B, which is the 

minimum cash capital required to clear a forest and establish a ladang. This is the first 

necessary condition for deforestation in the study area. However, as discussed in 

Wibowo, D.H. (2009), the farmer would not be financially capable of clearing  a forest if 

his or her income falls below a “target boundary” + . Here  denotes 

consumption at the subsistence level, while   represents the minimum level of 

income-generating expenses. Consequently we have if  

 

Before proceeding further with the modeling, a brief discussion on the technique is 

presented. Readers who wish to go beyond the basic materials described here are 

recommended to consult inter alia Malliaris and Brock (1982) and Oksendal (1992) 

 

 

                                                 
1 See Wibowo, D.H. and Byron, R. N. (1999);  Wibowo, D.H. (1999); Wibowo, D.H., Tisdell, C.A. and 
Byron, R.N. (1997); and Wibowo, D.H. (2009),  
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THE HAMILTON-JACOBI-BELLMAN EQUATION  
 
Consider an SDE 

   )     (1)   

Where and is m-dimensional 

Brownian motion. For this SDE, we can define the differential generator (or weak 

infinitesimal operator) of as follows : 
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Where denotes expectation w. r. t. , that is, the probability law of   starting at 

.           . 

 

Now let  be the set of functions .such that the limit exists at (  ), 

and  e the set of functions for which the limit exists for all  We can then 

state the following theorem. 

 

Theorem 1.  is bounded with first and second derivatives, then for the SDE 

(1),   and  

.  (3) 

   

Proof : See Øksendal (1992), pp. 93-95 for the proof. 

 

As an example of the use of Theorem 1, consider the It  diffusion version of the 

Langevin equation: tt vdBdtuCudC   )   (-  21t ++=  

 

Example 2.  For the SDE 

      (4) 

The differential generator    is then 

             (5) 

Where  and  are the first and  second  partial derivatives of  

Another example is given below. 

 

Example 3. The  diffusion whose differential generator is given by  
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Satisfies 

 
 

Now suppose that the system in equation (1) is controlled by a parameter 

whose value is chosen from a given Borel set at any instant.  

Equation (8.1) then becomes 

    (6) 

Note here that it self is a stochastic process, and the function 

is adapted. 

 

Furthermore, assume that we need to maximize the following objective function : 

    (7) 

Where as before   is the expectation w. r. t. the probability law of starting at 

( ), given that   As usual, the utility function   and the 

bequest function  are both assumed to be strictly concave in their respective 

arguments. Here  denotes the exit time of   

 

From equation (7), one has the performance criterion of the form 

    (8) 

Where .is the utility function. 

 

Our problem is then to find a value for   and  such that  

*),,(),,(),,(* sup uxsjuxsjuxsJ
Uu

==
∈

      (9) 

 

Assuming that the value of   at time  depends only on the state of the system at this 

time, not on the initial values  and , then we have  as a Markov control. 

For   we use Theorem 1 to define 

 (10) 

 

Where . 
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Applying the theory of stochastic control, we have the HJB equation as follows : 

 

Theorem 4. (The Hamilton-Jacobi-Bellman Equation) Define as in equation 

(8.9), where u is a Markou control. Also define 

γ = )]*)((),([sup yJHvyF v

Uv

+
∈

    (11) 

If  is twice continuously differentiable and an optimal Markou control u exists, then u 

satisfies 

      (12) 

for all   and 

     (13) 

for . 

 

Proof : See Øksendal (1992), pp. 182-184 for the proof. 

Here note that denotes the objective function to be optimized, which in the case 

of equation (7) is given by  

 

Now suppose that we add a jump process to equation (1). If the jump is modeled as a 

Poisson process, the SDE (1) becomes 

    (14) 

 

Where the other notations are as in equation (1),  is a function and  a 

Poisson process. For simplicity, we assume that there is no correlation between the 

Brownian motion and the Poisson process. Let 

• be the probability that   jumps once in the time interval  

• be the probability that does not jump in the time interval 

 

•   be the probability that  jumps more than once in the time interval 

, and 

• the amplitude  of the jump be a random variable with density function  

where .is the mean number of the jump occurrences per unit time,  can be as 

small as we like, and  is the asymptotic order symbol defined by is  

if  
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Then, for the SDE (14) we have the differential generator 

 

(15) 

After assuming that the  vanishes. Substituting the generator (15) into equation 

(11) one can use Theorem 4 to solve a stochastic control problem involving a mixed 

Brownian motion and Poisson process. 

 

Suppose that we have a set of optimal Markovian controls  where Taking  

the view of  as a constraint, equation (11) can be expressed as a standard 

Lagrangian equation 

     (16) 

Where  is the multiplier. The optimal controls  can then be found from the first-

order conditions 

      (17) 

Needless to say that this Lagrangian technique is applicable for equation (11) 

regardless of whether the differential generator  takes the form of (3) or (15). 
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STOCHASTIC CONTROL MODELS FOR DEFORESTATION 
 
The Multiplicative Verhulst Model 
 
Initially an attempt was made to determine optimal controls for a system characterized 

by the multiplicative Verhulst model. Using the technique of separation of variable, 

however, there appear to be no simple closed form solutions for this model. Thus, 

another specification of the system will be used in the later part of this paper. 

 

To see why stochastic control problems that use the multiplicative Verhulst model are 

difficult to solve, let us reconsider the SDE 

   = )      (18)             

Where, as in equation (33), and 

For brevity, the SDE (18)  is assumed to contain no 

jumps in the process  

 

Next define the performance criterion 

    (19) 

With a bequest function 

       (20) 

Where denotes the rate of time preference, .is consumption, and   is the size of 

land cleared from a forest. The relationship between  and is given by 

    where  is the unit cost of forest clearing after being 

normalized against the price of consumption. Note that here the price of consumption is 

normalized into unity. 

 

Applying the differential generator (3), equation (10) and Theorem 4, we have 

)                         (21) 

  

Given the constraint  one obtains the following first-order conditions from 

the Lagrangian (8.16) by differentiating w. r. t.  
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                   (22) 

And 

      (23) 

  

Here the subscripts  and denote partial derivatives w. r. t. these variables, and 

        (24) 

From the firs and the third rows of equation (22) we have 

,                                                (25) 

While from the first and the second ones we have upon simplification  

      (26) 

Where  

Meanwhile, an expression for  is given by  

   (27) 

 

after substituting and rearranging equation (26) and the first and the fourth row of 

equation (22). 

 

From the second and the fourth rows of equation (22) one obtains  

    (28) 

Now define Because then we have from (27) and (28) that 

 (29) 

 

Substitute (26) and (27) into equation (21) to have the following partial differential 

equation (PDE) 

 (30) 

 

To see the difficulties in solving (30), let 
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                          (31) 

Where and  assumed to be constants. Taking the derivatives of (31) w. r. t. 

and , and  applying equation (25) gives 

     (32) 

Substituting (32) into (29) gives …. As the solution of  

(33) 

We can see from equations (32) and (33) that  .and .are linked by a non-linear 

relationship. Thus, there appears to be no easy closed form solution to the PDE (30). 

Consequently, we may need to resort to numerical methods to solve the problem. 

Because numerical methods are not the focus of this thesis, and because in any case 

the problem is a higly non-linear parabolic problem which is difficult to solve, the 

methods are not adopted here. Instead, another form of SDEs is examined in order to 

find a closed form solution for the problem. Given its popularity in the economics 

profession, the ARMA(1,1) specification is then adopted in the next subsection. 

 

 

The ARMA(1,1) Model 
 

From equation 1110 )1( −− −−++= tttt eecaac ϕ  and tttt vdBducudc )1()( 21 α−++−= , 

we know that the ARMA (1.1) specification can be transformed into a generalization of 

the Langevin equation. Assuming that the noise appears multiplicatively and there is a 

jump process in the system, then we have  

  (34) 

as a modal for the farmer’s stochastic income process. Here denotes drift coefficients 

related to the AR parameters,  is the moving average coefficient, while the control 

variable are as defined in the second paragraph of this paper. To represent the 

farmer’s capital accumulation, a jump process is added, where is a 

constant representing the amplitude of the jump, is decaying factor and is a 

Poisson process. As usual, the Brownian motion and the Poisson process are 

assumed to have no correlation, where  The readers can easily see that 
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we have an (upward) jump that decays over time. Finally, note that in order to keep 

things simple, no correlation between the jump process and the control variable is 

assumed. In this case, one may argue that such an assumption seems unnecessary 

because we can, say, put a term in the jump term of equation (34). But the matter is 

not that simple. Empirically, the jump is not reliant on the control variables in the 

current time. However, if the jump occurs, farmers might reorganize their income 

allocation as they now have a large amount of cash. Thus, the jump might in fact affect 

the control, not the other way around. Such an empirical fact cannot be represented by 

simply putting a term in the jump term of equation (34). For this reason, the above 

assumption is adopted in order to have a greater tractability. 

 

Following the same procedure used to construct equation (33), we have  

  (35)     

Where, as before,  

 

Now define the performance criterion and the bequest function as in equations (19) and 

(20), respectively. Appling the differential generator (15) and Theorem 4, we have 

(36) 

 

The first-order conditions of this problem are 

      

    

      

                                    (37) 

And 

      (38) 

Where the subscripts .and denote partial derivatives w. r. t.  these variables. 

 

From the first and the third rows of equation (37) we have 

        (39) 

While from the first and the fourth ones we have 
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     (40) 

 

Assuming that  takes the form of equation (31), applying (39) gives 

    (41) 

From equations (40) and (41) we have 

    (42) 

And 

   (43) 

From the first and the second rows of the first-order conditions (37) we have 

  (44) 

 

Substitute equations (40),(41), and (43) into (36) and rearrange to have the PDE 

 

     (45) 

 

To parameterize the PDE (45), we use the isoelastic utility function: 
'1

)(
1

δ

δ

−
=

−
t

t
c
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where land is treated as a durable good that enter the farmer’s utility function. Thus, let 

     

           (46) 

Where, as shown in equation (13),  is the coefficient of relative risk aversion Also let 

    (47) 

 

After taking the partial derivatives of w. r. t. its .and  arguments, from equation 

(39) we have 
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    (48) 

Which can also be written as 

    (49) 

Where   

 

Use equations (40, 41, 46, 47, 48) and (49) to derive 

     (50) 

Which is the solution for optimum  

 

 

Now use equations (46, 47, 48, 49) and (50) to solve the PDE (45). After rearranging 

and eliminating the same terms we have 

     (51) 

 

 

Where 

(52) 

 

And  

     (53) 

 

Note that  and then the jump 

disappears. 

 

To solve (51) we use the general form 

 
Where and  are constants. Using the boundary condition  we arrive 

at the following solution for  
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    (54) 

 

For  and . Consequently. We have 

 

  (55) 

and  

 .   (56) 

 

 

The solution of  has been given by equation (50). For the other control variables, the 

solutions are 

     (57) 

 

After substituting relevant expressions into equation (44), and  

 

   (58) 

 

Due to (48 and 49) and the fact that With   and 

solved, the solution for optimum can be easily found. Here it 

should be noted that the expression for optimum  is also influenced by the cost of 

forest clearing  Note that since we require .and  this 

requirement will impose certain constraints on the problem parameters. 

 

Equation (58) is, however, only relevant for the cases where  after the optimal 

value of is substituted into the system, and where     If the opposite is true, 

that is, in the case of . and/ or  then the farmer in question is not 

financially capable of clearing a forest. Consequently, the optimum   is set to zero, 

and  becomes 
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    (59) 

Finally, it is worth noting that the optimal values of the controls are independent of the 

jump process. This result comes as a consequence of our assumption of no correlation 

between the controls and the jump process. 

 

Numerical Simulation 
 
As in Wibowo (2009), consider the case of an anak ladang in the upper Kerinci region.  

Using the empirical data reported in Wibowo (2009), we have   2.51, B =1.69, and 

and  0.57. If  and/or are assumed to represent the optimal values 

of the control variables, we have 0.40 and/or 0.57. Substituting this value of 

into equation (48) gives an “empirical value” of 0.84, if   0.05 is assumed. 

 

To represent the case of a risk-taking (or risk-loving) farmer, we assume  The 

case of risk-averting farmer is given by  The value of is not chosen 

because it leads to the sum of the controls exceeding unity. 

 

Finally, the value of  is normalized into unity. The value of  with a jump is set at  

3.26 because the lump sum received by the farmers by the end of the cinnamon 

planting cycle is 2.26 larger than the regular potato income. Note here that   has 

been implicitly assumed2.  

 

The results of the simulation are presented in Table 1. Case 1 shows the “standard” 

case for a risk-taking farmer, where the optima  and  are assumed to be equal to 

the empirical values of  and . Because  and , we have the case where 

the farmer cannot afford the cost of forest clearing and its associated cost. As 

expected, with a relatively large negative value of the control  would fall sharply 

had the farmer cleared a forest. 

 

                                                 
2 The jump can also be approximated by choosing a value of  and  and then computing  
J by use of equation (56). This approach is not adopted here for time-efficiency reason 
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Table 1.  Numerical Simulations of the Control Variables 

 

  Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

A The Parameters             

 b1 0.84 0.84 0.84 0.84 0.84 0.84 

 alpha 1.32 1.10 1.32 1.10 1.32 1.10 

 sigma 1.00 1.00 1.00 1.00 1.00 1.00 

 delta -3.00 0.01 -3.00 0.01 -3.00 0.01 

 r 0.05 0.05 0.05 0.05 0.05 0.05 

 B 1.69 1.69 1.69 1.69 1.69 1.69 

 X 1.00 1.00 3.26 3.26 7.00 7.00 

 Xbar 2.51 2.51 2.51 2.51 2.51 2.51 

B The Controls       

 V1-def 0.13 0.11 0.13 0.11 0.13 0.11 

 v1-nodef 0.40 0.11 0.40 0.11 0.40 0.11 

 v2 0.57 0.57 0.57 0.57 0.57 0.57 

 v3 0.27 0.00 0.27 0.00 0.27 0.00 

 v4 0.03 0.32 0.03 0.32 0.03 0.32 

C The Results       

 C-def 0.13 0.11 0.44 0.36 0.94 0.77 

 C-nodef 0.40 0.11 1.31 0.36 2.82 0.77 

 Q 0.57 0.57 1.86 1.86 3.99 3.99 

 L 0.27 0.00 0.88 0.00 1.88 0.00 

 Saving 0.03 0.32 0.09 1.04 0.19 2.24 

Notes: 
b 1  =  drift coefficient, 
alpha, sigma =  diffusion coefficients, 
delta  =  the coefficient of risk aversion, 
r  =  rate of interest 
B  =  the cost of forest clearing and dry-land farming establishment, 
X =  income, X =1 represents the case of no jumps, X=Y represents the case   

where the jump is (Y-1) times the original income, 
X bar =  the minimum amount of cash capital required to clear a forest and to cover 

other associated costs, 
V 1-def = the optimal proportion of income allocated for consumption if the farmer  

clears a forest, 
V1-nodef =  the optimal proportion of income allocated for consumption if the farmer does 

not clear a forest, 
V2  =  the optimal proportion of income allocated for income-generating activities, 
V3 =  the optimal proportion of income allocated for forest clearing, v3=0 if farmers 

does not clear a forest, 
V4  =  the optimal proportion of income allocated for saving, 
C =  consumption, 
Q =  income-generating expenses 
L =  forest clearing expenses, and 
Saving =  the amount of income saved. 
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Case 2 exhibits an interesting result as far as forest conservation is concerned. For this 

risk-averting farmer, an optimal strategy would be to set , and consequently, 

. As can seen from Table 1, this strategy also includes reducing his or her current 

consumption. More importantly, even if this farmer receives a much larger income (see 

Cases 4 and 6), he or she still sets . This result from the fact that , 

where in this case .  With such a large exponent for the  result follows. 

 

Another important result can be seen from Case 3. With a jump of 2.26 times the 

regular income, the optimal  is shown to be only 0.88, much less than the minimum 

requirement of This is despite the fact that . Only if jump increases to 

around six times the regular income does the optimal  exceed  . This result can be 

seen from Case 5. Note that in all Cases 1,3 and 5,  is always greater than if the 

farmer clears  a forest, but is always lower than in the no-deforestation case. 

 

 

DISCUSSION 
 
The model indicates that, because land is treated as an argument in the farmer’s utility 

function, than the farmer also considers the cost of forest clearing in their optimal 

consumption and forest clearing decisions. If the farmer’s optimal allocation for forest 

clearing exceeds the minimum costs required and his total income (X) exceeds the 

target income  then he or she has the financial capacity to clear a forest. 

 

The results of out numerical simulations, however, shows that capital accumulation (as 

represented by the jump process) does not always result in the farmer having the 

financial capacity to clear a forest. In the case of a risk- averting farmer, for example, 

the farmer tends to put more money into his or her saving, while at the same time 

setting his or her allocation for forest clearing to zero. One explanation for this is that 

for a risk-averting farmer, forest clearing is seen as too-risky investment. Thus, he or 

she prefers to have a “liquid” saving (such as cash and jewelry) which can be liquidated 

quickly. Because this farmer is also prepared to sacrifice his or her consumption in 

return for increased saving, the farmer represents the classical case of precautionary 

saving. In other words, precautionary motives may work against further deforestation. 
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Another explanation for this result is that the model used here might have been too 

restrictive, in the sense that it does not allow the control variables to vary according to 

the jump process. But as discussed earlier, such an assumption is needed for both 

tractability and empirical reasons . In addition to this, the (time-additive) CRRA utility 

function used might have also contributed to this restrictiveness because the function 

itself is restrictive despite its popularity. Furthermore, the value of  chosen, i.e. 

 seems also to have caused this result. Unfortunately, such a low positive 

value is needed in order to satisfy the constraint and  

Because of all these problems, the result should be viewed only as a special case that 

might not be applicable under other circumstances. 

 

The case of a risk-taking farmer gives further insight into farmers’ deforestation 

behavior. This type of farmer is prepared to sacrifice consumption in order to invest in 

forest clearing. This can be seen from the fact that if this farmer clears a forest, his or 

her optimal consumption declines sharply to a level lower than the amount of money 

allocated for forest clearing. Thus, as far as forest conservation is concerned, risk-

taking farmers are more likely to pose a threat to forest reserves than risk-averting 

ones. The “cat-and-mouse” game discussed in Wibowo, D.H., Tisdell, C.A. and Byron, 

R.N. (1997), provides empirical supports for this result. 

 

The simulation, however, also shows that if risk-taking farmers optimize their income 

allocation, capital accumulation does not necessarily give them financial capacity to 

clear a forest. This is despite the fact that their total income exceeds a “target 

boundary” representing the minimum level of income required to cover forest clearing 

costs, consumption at the subsistence level and the minimum level of income-

generating expenses. If this result is compared to that of the Fokker-Planck modeling, it 

is clear that consumption optimalization has raised the financial requirement for forest 

clearing. In the Fokker-Planck modeling, if total income exceeds the target boundary, 

then the forest clearing costs are already covered. This is because the consumption is 

set at the subsistence level. With optimalization, the consumption moves above the 

subsistence level, resulting in less money allocated for forest clearing costs. As a 

result, the farmer’s optimal level of forest clearing expenses may fall below the costs of 

forest clearing. 
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While this result shows that there are cases where consumption optimalization 

precludes deforestation, there are other cases where some farmers are prepared to 

live at the subsistence level in order to own land later in life. This may on the surface 

gives an indication that deforestation is caused more by sub-optimal consumption than 

by the optimal one. However, such a finding may well result from our underestimation 

of the importance of land in the farmer’s utility function. The farmer may in fact give a 

much greater weight to land than previously assumed, in him or her being prepared to 

sacrifice more consumption. Thus, the farmer’s  choice to live at the subsistence level 

may in fact be an optimal one. For this reason and other shortcomings discussed 

earlier, the results of this paper should be seen only as a precursor to a more complex 

deforestation modeling. 

 

 

CONCLUSION 
 
The ARMA(1,1) deforestation model of this paper has given further insight into farmers’ 

deforestation and capital accumulation behavior. Of particular importance here is how 

farmers’ attitude towards risks (and their precautionary motives of saving) affect these 

behaviors. A risk-taking farmer appears to be more likely to clear a forest than a risk-

averting one. The result also shows the case where consumption optimalization may 

preclude further forest clearing. But given the limitations of this modeling, these results 

should be seen as only a part of a much more complex deforestation behavior. 
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