OPTIMAL CONSUMPTION AND DEFORESTATION

Dradjad Hari Wibowo

This paper presents farmer’s optimization problem and how it relates to his or her deforestation behavior.
The main technique used here is a stochastic control model solved by the Hamilton-Jacobi-Bellman (HJB)
equation. The farmer’s capital accumulation is treated as a jump process approximated by the Poisson
process. The control variables are assumed to be of Markovian type. The ARMA(1,1) deforestation model
of this paper has given further insight into farmers’ deforestation and capital accumulation behavior. Of
particular importance is how farmers’ attitude towards risks (and their precautionary motives of saving)
affect these behaviors. A risk-taking farmer appears to be more likely to clear a forest than a risk-averting
one. The result also shows the case where consumption optimalization may preclude further forest
clearing. But given the limitations of the modeling, these results should be seen as only a part of a much

more complex deforestation behavior.



INTRODUCTION

In the previous study', the deforestation model was built without reference to the
farmer’s utility function. Consumption was set ex ante at a given subsistence level and
no optimization was undertaken. While such an approach has produced a model
capable of explaining the empirical results (Wibowo, D.H., Tisdell, C.A. and Byron,
R.N., 1997), it would be desirable to see if these empirical results can also be
explained by a model built on the basis of the farmer’'s consumption optimization. For
this reason, this paper will focus on the farmer's optimization problem and how it
relates to his or her deforestation behavior. The main technique used here is the
stochastic control model which will be solved by the Hamilton-Jacobi-Bellman (HJB)
equation. The farmer’s capital accumulation is treated as a jump process approximated
by the Poisson process. The control variables are assumed to be of Markovian type.

The main strategy adopted here is to first determine the optimal level of the control
variable w;. As in Wibowo (2009), these controls represents the proportion of income
allocated for consumption . = 4;X;, income-generating expenses @. = 4.4, and
forest clearing expenses L, = 13X, The income residual (or saving) is given by

X: = ugX; , where 1y - 3., - The next step is to show that if the jump process does

not occur in a given time interval, than the optimized L, will fall below B, which is the
minimum cash capital required to clear a forest and establish a ladang. This is the first
necessary condition for deforestation in the study area. However, as discussed in
Wibowo, D.H. (2009), the farmer would not be financially capable of clearing a forest if
his or her income falls below a “target boundary” ¥ = B+ C + {. Here U = (.denotes
consumption at the subsistence level, while § = Q, represents the minimum level of

income-generating expenses. Consequently we have L, = 0if L, <X Band/or X, < X.

Before proceeding further with the modeling, a brief discussion on the technique is
presented. Readers who wish to go beyond the basic materials described here are

recommended to consult inter alia Malliaris and Brock (1982) and Oksendal (1992)

' See Wibowo, D.H. and Byron, R. N. (1999); Wibowo, D.H. (1999); Wibowo, D.H., Tisdell, C.A. and
Byron, R.N. (1997); and Wibowo, D.H. (2009),



THE HAMILTON-JACOBI-BELLMAN EQUATION

Consider an SDE

dX, = A(t X dt +o(tX,)dB, (1
Where X, € R™, A({t,X. ) € R",»(t,X )€ BR**m and B.is m-dimensional
Brownian motion. For this SDE, we can define the differential generator (or weak
infinitesimal operator) H of X, as follows :

t,x B
Hf(t,X):IimE (f(t+At’xt+At)) f(t,X);X
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Where E*+ denotes expectation w. r. t. P, that is, the probability law of E, starting at

(t, x).

Now let T1;.( £, x be the set of functions y : ®* — R.such that the limit exists at ( t, x ),
and D, be the set of functions for which the limit exists for all ¢, x ¢ R™- We can then

state the following theorem.

Theorem 1. If f € G%is bounded with first and second derivatives, then for the SDE
(1), f € Dy and

a a 1 - a
HFED =5+ Tiditew 3+ 5 Zis(007 Yif (6205 (3)

Xy
Proof : See Gksendal (1992), pp. 93-95 for the proof.

As an example of the use of Theorem 1, consider the Itg diffusion version of the

Langevin equation: dC, =(-u,C, +u,)dt +vdB,

Example 2. For the SDE
dC.=_, C'dt +vdB,, (4)
The differential generator H f{r) is then
HF() = —w Cf + v2fe, (5)
Where 1, and f.. are the first and second partial derivatives of f w.r.r. c.

Another example is given below.

Example 3. The It@ diffusion whose differential generator 7 f (x}is given by



N 1
Hf(x) = 2pfx +In(1+x7 +x3)fr Foxfat Xifue 3
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Satisfies
Xm. 2x2 X1
= at + ab
(dXz-) (1?1(1 +x%+x§}) (1) -

Now suppose that the system in equation (1) is controlled by a parameter
w £ I = R% whose value is chosen from a given Borel set [7 at any instant.
Equation (8.1) then becomes

dX, = A(t,X.u)dt + ¢ (¢, X,,u)dB, (6)
Note here that u =u(t w]it self is a stochastic process, and the function

w — ut,w)is F,_adapted.

Furthermore, assume that we need to maximize the following objective function :
maxE** [[7 0 (t,X,,udt +](T, X7)| (7)
Where as before E=* is the expectation w. r. t. the probability law of B, starting at
(s,x), giventhat 0 =5 =1t x.=x As usual, the utility function @ (¢, x.,u) and the
bequest function J{ T, Xr)are both assumed to be strictly concave in their respective

i arguments. Here T denotes the exit time of iy

From equation (7), one has the performance criterion of the form
] (s,%0) =E5* [[]0 (t.X,,w)dr +](T, X7)] (®)

Where @.is the utility function.

Our problem is then to find a value for [+(s x,u ) and u* {s,w) such that

J*(s,x,u) =SUP (s, x,u) = j(s,x,u%) 9)

ueU

Assuming that the value of u at time 7 depends only on the state of the system at this
time, not on the initial values = = 0 and X; = x, then we have u as a Markov control.

For v £ 1, we use Theorem 1 to define

@7 HO) =L 0 + Tedi 0,0) £ + 35,007 G 0)

2

i f
gyl x; (10)

Where vy =(5,x).



Applying the theory of stochastic control, we have the HJB equation as follows :

Theorem 4. (The Hamilton-Jacobi-Bellman Equation) Define {1} as in equation

(8.9), where u is a Markou control. Also define

v = SUPLF(y,v)+(H"I*)(Y)] (11)
veU
If J* is twice continuously differentiable and an optimal Markou control u exists, then u
satisfies
T=0 (12)
forall y =(T,X;)and
JUT, Xz )=] (T, Xz) (13)

fory = (T, X

Proof : See @ksendal (1992), pp. 182-184 for the proof.
Here note that F (3, videnotes the objective function to be optimized, which in the case

of equation (7) is given by @ (z,x, 1 ).

Now suppose that we add a jump process to equation (1). If the jump is modeled as a
Poisson process, the SDE (1) becomes
dX, = A(t, X, )dt+ ot X, )dB, +5(t, X, )dg, (14)

Where the other notations are as in equation (1), 5 {t,X.) ¢ RB™ is a function and g {t) a

Poisson process. For simplicity, we assume that there is no correlation between the

Brownian motion and the Poisson process. Let

e At + O (At) be the probability that g, jumps once in the time interval (¢, ¢ + At),

e 1 —» At+ {At) be the probability that g.does not jump in the time interval
(t,t+ At)

e ((At) be the probability that g, jumps more than once in the time interval
(t,t+ At), and

e the amplitude $ of the jump be a random variable with density function p { § J,

where =.is the mean number of the jump occurrences per unit time, At can be as

small as we like, and (At} is the asymptotic order symbol defined by (At} is 7{A#)

if



_ p(At)
lim |
atlo”™ At

)=0
Then, for the SDE (14) we have the differential generator

Hf(tx) = = +7ﬁ (tx}—+ 7(051'}11&%", ';r

.07,
q| jf{f(g x+5(2,%) q) - &, 0))p(dq) (15)

After assuming that the @{At) vanishes. Substituting the generator (15) into equation

(11) one can use Theorem 4 to solve a stochastic control problem involving a mixed

Brownian motion and Poisson process.

Suppose that we have a set of optimal Markovian controls v; where };1; = 2 Taking
the view of ¥,v; =1 as a constraint, equation (11) can be expressed as a standard
Lagrangian equation

L="+%{1- }u) (16)
Where 3 is the multiplier. The optimal controls 1; £ 1 can then be found from the first-

order conditions

Lo, (17)

Needless to say that this Lagrangian technique is applicable for equation (11)

regardless of whether the differential generator takes the form of (3) or (15).



STOCHASTIC CONTROL MODELS FOR DEFORESTATION
The Multiplicative Verhulst Model

Initially an attempt was made to determine optimal controls for a system characterized
by the multiplicative Verhulst model. Using the technique of separation of variable,
however, there appear to be no simple closed form solutions for this model. Thus,

another specification of the system will be used in the later part of this paper.

To see why stochastic control problems that use the multiplicative Verhulst model are
difficult to solve, let us reconsider the SDE

d X,= (a¥, — bX?)dt + ( gX, — hX?)dB, (18)
Where, as in equation (33), @ = u, €(0,1), b =u,8/K,g = af, h = ¢6?/Kand
g =1-(1 +7){1 — ¥3_,u;). For brevity, the SDE (18) is assumed to contain no

jumps in the process X,

Next define the performance criterion
J(t, x,u) = E** [_er‘-"s o (el s}ds] (19)
With a bequest function
J(T,x,u) =0, (20)
Where g denotes the rate of time preference, ¢.is consumption, and 1 is the size of
land cleared from a forest. The relationship between [, and L.is given by
l. =L, /B =15 X./E, where Eis the unit cost of forest clearing after being
normalized against the price of consumption. Note that here the price of consumption is

normalized into unity.

Applying the differential generator (3), equation (10) and Theorem 4, we have

€70+ J; (ax = b +3 (93— ha?)Y = 0 (21)

Given the constraint £, v; — 1, one obtains the following first-order conditions from
the Lagrangian (8.16) by differentiating w. r. t. w; :
(1+r)

N o= e Fipx—

vax? ], + =

_ 1 -
w» =xf. — % (1 +201 +7hwa— (1 + 731 =2y - v W), + 5



And
1-3iv =0, (23)

Here the subscripts ¢, land x denote partial derivatives w. r. t. these variables, and
= @61+ 1221 - 201 -2 ¥, (24)

From the firs and the third rows of equation (22) we have

_ &
o.=2 (25)
While from the first and the second ones we have upon simplification
8 Ik—ePo;
= = (26)
Where 8 =1-(1+7r)(1- i, ).
Meanwhile, an expression for 1, is given by
E_Pt‘buK Ty e_'ﬂcmr., - e—_ﬂtmb .IF.:.:
P, = ——————— — @-K* -1} | —— =
2(1 + 1"} ‘x]x .-Fx .-Fr x.nx (27)

after substituting and rearranging equation (26) and the first and the fourth row of

equation (22).

From the second and the fourth rows of equation (22) one obtains
e ' K K 1
= + - .
21+r)Xx], A+2)x (1+0)x (28)

1Fs

Now define § = vy, + v3Because T, = 1then we have from (27) and (28) that

B=1+aK? (e Y, 1)2 (e P*t,{ﬁc) s N K 1
- I Je ) XL (1+2)X  (1+0lx (29

Substitute (26) and (27) into equation (21) to have the following partial differential
equation (PDE)

E‘_-m:@é.l-{ E_-M@: 57 e—_ac@;" 1 _
mf”ﬁ(iﬂ}fﬁ“( T 1)( 7o) (G-ekn) =0

" (30)

To see the difficulties in solving (30), let



ole,L,t) = f ()8 (c.1)
= F()8 (v, x), (31)
Where 1y ¥ and B assumed to be constants. Taking the derivatives of (31) w. r. t.

¢ and x, and applying equation (25) gives

_ By _ i
'?j,; - vyt g - vatwg (32)
Substituting (32) into (29) gives .... As the solution of
1 — 2 — K
— 22 __ —pt — —pt -3 -4 -
p=1+ a2k (K =3) (1B = 1) (B8 05 e |- T
+—

(1+1)], (33)

We can see from equations (32) and (33) that @_@,..and £ .are linked by a non-linear
relationship. Thus, there appears to be no easy closed form solution to the PDE (30).
Consequently, we may need to resort to numerical methods to solve the problem.
Because numerical methods are not the focus of this thesis, and because in any case
the problem is a higly non-linear parabolic problem which is difficult to solve, the
methods are not adopted here. Instead, another form of SDEs is examined in order to
find a closed form solution for the problem. Given its popularity in the economics

profession, the ARMA(1,1) specification is then adopted in the next subsection.

The ARMA(L,1) Model

From equation ¢, =a, +a,c,, +€, —(1—¢)e,, and dc, = (-u,c, +u,)d, + (L—)vdB,,
we know that the ARMA (1.1) specification can be transformed into a generalization of
the Langevin equation. Assuming that the noise appears multiplicatively and there is a
jump process in the system, then we have

dX,e = v (=0 X, + Eo)dt + v,(1 —a)o X.dB. + Ke 7" X.dg, (34)
as a modal for the farmer’s stochastic income process. Here b;denotes drift coefficients
related to the AR parameters, « is the moving average coefficient, while the control
variable v;are as defined in the second paragraph of this paper. To represent the
farmer’s capital accumulation, a jump process Ke "' X, dq.is added, where Kis a
constant representing the amplitude of the jump, y is decaying factor and g.is a
Poisson process. As usual, the Brownian motion and the Poisson process are

assumed to have no correlation, where § = 1.w.p 1. The readers can easily see that



we have an (upward) jump that decays over time. Finally, note that in order to keep
things simple, no correlation between the jump process and the control variable is
assumed. In this case, one may argue that such an assumption seems unnecessary
because we can, say, put a v, term in the jump term of equation (34). But the matter is
not that simple. Empirically, the jump is not reliant on the control variables in the
current time. However, if the jump occurs, farmers might reorganize their income
allocation as they now have a large amount of cash. Thus, the jump might in fact affect
the control, not the other way around. Such an empirical fact cannot be represented by
simply putting a v, term in the jump term of equation (34). For this reason, the above

assumption is adopted in order to have a greater tractability.

Following the same procedure used to construct equation (33), we have
dX, = v, (—b.8X, + by)dt + v,(1 —a)o X.dB. + Ke™7* X.dg, (35)
Where, as before, § =1 — (1 +7)(1—4).

Now define the performance criterion and the bequest function as in equations (19) and

(20), respectively. Appling the differential generator (15) and Theorem 4, we have

1, 2 2 o
Yi= e # 0+ ], +v,(b;— b 8X)]. + Etﬂ:‘(i —a)?o?x? .. +x [J(t,ke™x) — J(t.x)] =0

(36)
The first-order conditions of this problem are
= e TP E X — by (1 + )X,
= by— bl(j- - (1 + T}t’é} }xjx + v (1 - a}zc"_:x:.fxx
:: e—_ﬂ't@: % — blt’: (1 + T‘}I'_fx
=1+ )by X, (37)
And
2
1- ZT—"E = ﬂ
= (38)
Where the subscripts ¢, I .and x denote partial derivatives w. r. t. these variables.
From the first and the third rows of equation (37) we have
o,
%= 3 (39)

While from the first and the fourth ones we have

10



e,

2[1+ I‘]bj_fx (40)

1 =
V2

Assuming that @ takes the form of equation (31), applying (39) gives

0. — By _ f B
c 5 + g 21 + g (41)
From equations (40) and (41) we have
gt @x

W+ +v5) = g )

And
g =1 (1+T‘}+—E - +{1+7)w
Ivo by Z. ( )

From the first and the second rows of the first-order conditions (37) we have

1 e_'m@x
T+ |y g

— 2 (b1 +7) e+ (1 — a}zcr:xjn}—% + byJ. |

Py

(44)

Substitute equations (40),(41), and (43) into (36) and rearrange to have the PDE

Jt By b2 x0, X0y ePlxed _ XDy

T:i=0+ - - -
g=Pt " 2(14edby e tey)  2014rd(m4es)  2(wates]  4014rderbplertes)fy Hwates)

201 — )2 2x?,,,
vz zr;}—.ﬂ': v +o |J{t, ke ™ x) — [(t,x)] =0 (45)

1-6
t

1-6"

where land is treated as a durable good that enter the farmer’s utility function. Thus, let

witc =] () (CH + EH,\)

1-8 1-—-28

) _ Vg 1-8] y1-é
=f(t}[f11 -(F) ]1_5, 6)

Where, as shown in equation (13), & is the coefficient of relative risk aversion Also let

To parameterize the PDE (45), we use the isoelastic utility function: v(c,) =

1-4
_ 47)

f — }L {t}e—_ut-t:l & -]‘:X'-

After taking the partial derivatives of @w. r. t. its¢,I.and x arguments, from equation
(39) we have

11



vy +vy = vy (1+ BE), (48)
Which can also be written as

_z Vg, . _ = _ =z =
w o+ (0= w18 (1+89),

(49)
Where § = a—_l
(a]
Use equations (40, 41, 46, 47, 48) and (49) to derive
1
V2= o o
2(1 +7)by (50)

Which is the solution for optimum 1,

Now use equations (46, 47, 48, 49) and (50) to solve the PDE (45). After rearranging

and eliminating the same terms we have

Je = Dof + Dy, (51)

Where

Do=p—v(1+ B;]_ (1- 5}( - ) (1-a)’a*6+ (- 9)

2(1 +7) 8(1 +1)%
1 . = -
+5u (1+B%)(1—8) +n e (ke T — 1) (52)
And
po_ 138
7 Al + )by (53)
Note that &k — k'~fand 7 = y(1 &)L » =0 and/or ¥ = Ink/t,then the jump
disappears.

To solve (51) we use the general form
ft) =M,ePt + M;t,
Where Myand M. are constants. Using the boundary condition [ {T,x ) = 0 we arrive

at the following solution for f (t)

12



E_DD':-T_r} 1
)= D -
AL HDeT—1 Dgt—1 (54)
For D;T— 1 and Dyt — 1 = 0. Consequently. We have
e—Do(T—1) 1 ] [ . g 178] 18
0 =(tcl)=D - B+ (= .
HDeT—1  Der—1[* B) 1-8"' (55)
and
J(tx,v) = D [ DeT—1 Dnr—]_-le W T (56)

The solution of 17, has been given by equation (50). For the other control variables, the
solutions are
(1—a)20%6+ by —=
T 1+7 - (57)

After substituting relevant expressions into equation (44), and

1 (1—&}2526+b1—%
201+ by 1+r

1+ B¢ (58)

Due to (48 and 49) and the fact that vy + v3 =1 — v, — v, . With 5 v, and
vy solved, the solution for optimum v, =1 -1y, — 1, — wuycan be easily found. Here it
should be noted that the expression for optimum 1, is also influenced by the cost of
forest clearing E. Note that since we require v,—,, £(0,1).and 1,—3, € [0,1), this

requirement will impose certain constraints on the problem parameters.

Equation (58) is, however, only relevant for the cases where L, = E after the optimal
value of 5 is substituted into the system, and where X, = X . If the opposite is true,
that is, in the case of L, < Fand/ or X, < X, then the farmer in question is not
financially capable of clearing a forest. Consequently, the optimum w3 is set to zero,

and +; becomes

13



1 (1—a)o?8+by — %

201 +41)b, 1+7r (59)

21 =1

Finally, it is worth noting that the optimal values of the controls are independent of the
jump process. This result comes as a consequence of our assumption of no correlation

between the controls and the jump process.

Numerical Simulation

As in Wibowo (2009), consider the case of an anak ladang in the upper Kerinci region.
Using the empirical data reported in Wibowo (2009), we have ¥ =251,B=1.69, and
uy = 0.40 and u, = 0.57. If i, and/or u, are assumed to represent the optimal values
of the control variables, we have 1, =0.40 and/or v, =0.57. Substituting this value of

v, into equation (48) gives an “empirical value” of by =0.84, if » = 0.05 is assumed.

To represent the case of a risk-taking (or risk-loving) farmer, we assume § = —3, The
case of risk-averting farmer is given by § =0.01. The value of § =3is not chosen

because it leads to the sum of the controls exceeding unity.

Finally, the value of X is normalized into unity. The value of X with a jump is setat X =
3.26 because the lump sum received by the farmers by the end of the cinnamon
planting cycle is 2.26 larger than the regular potato income. Note here that A4 =1 has

been implicitly assumed?.

The results of the simulation are presented in Table 1. Case 1 shows the “standard”
case for a risk-taking farmer, where the optima 14 and v, are assumed to be equal to
the empirical values of «; and ;. Because L <. B and X < X, we have the case where
the farmer cannot afford the cost of forest clearing and its associated cost. As
expected, with a relatively large negative value of &,the control v, would fall sharply

had the farmer cleared a forest.

2 The jump can also be approximated by choosing a value of & and y and then computing
J (t.ke ") — J(t.x) by use of equation (56). This approach is not adopted here for time-efficiency reason

14



Table 1. Numerical Simulations of the Control Variables

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
A The Parameters
b1 0.84 0.84 0.84 0.84 0.84 0.84
alpha 1.32 1.10 1.32 1.10 1.32 1.10
sigma 1.00 1.00 1.00 1.00 1.00 1.00
delta -3.00 0.01 -3.00 0.01 -3.00 0.01
r 0.05 0.05 0.05 0.05 0.05 0.05
B 1.69 1.69 1.69 1.69 1.69 1.69
X 1.00 1.00 3.26 3.26 7.00 7.00
Xbar 2.51 2.51 2.51 2.51 2.51 2.51
B The Controls
V1-def 0.13 0.11 0.13 0.11 0.13 0.1
v1-nodef 0.40 0.11 0.40 0.11 0.40 0.11
v2 0.57 0.57 0.57 0.57 0.57 0.57
v3 0.27 0.00 0.27 0.00 0.27 0.00
v4 0.03 0.32 0.03 0.32 0.03 0.32
C The Results
C-def 0.13 0.11 0.44 0.36 0.94 0.77
C-nodef 0.40 0.11 1.31 0.36 2.82 0.77
Q 0.57 0.57 1.86 1.86 3.99 3.99
L 0.27 0.00 0.88 0.00 1.88 0.00
Saving 0.03 0.32 0.09 1.04 0.19 2.24
Notes:
b1 = drift coefficient,
alpha, sigma = diffusion coefficients,
delta = the coefficient of risk aversion,
r = rate of interest
B = the cost of forest clearing and dry-land farming establishment,
X = income, X =1 represents the case of no jumps, X=Y represents the case
where the jump is (Y-1) times the original income,
X bar = the minimum amount of cash capital required to clear a forest and to cover
other associated costs,
V 1-def = the optimal proportion of income allocated for consumption if the farmer
clears a forest,
V1-nodef = the optimal proportion of income allocated for consumption if the farmer does
not clear a forest,
V2 = the optimal proportion of income allocated for income-generating activities,
V3 = the optimal proportion of income allocated for forest clearing, v3=0 if farmers
does not clear a forest,
V4 = the optimal proportion of income allocated for saving,
C = consumption,
Q = income-generating expenses
L = forest clearing expenses, and
Saving = the amount of income saved.

15



Case 2 exhibits an interesting result as far as forest conservation is concerned. For this
risk-averting farmer, an optimal strategy would be to set v; = 0, and consequently,
L = 0. As can seen from Table 1, this strategy also includes reducing his or her current
consumption. More importantly, even if this farmer receives a much larger income (see

Cases 4 and 6), he or she still sets v; = 0. This result from the fact that v; = v, /55,

where in this case & = 99. With such a large exponent for B, the w3 = 0 result follows.

Another important result can be seen from Case 3. With a jump of 2.26 times the
regular income, the optimal L is shown to be only 0.88, much less than the minimum
requirement of B = 1.69. This is despite the fact that X = X. Only if jump increases to
around six times the regular income does the optimal [ exceed E . This result can be
seen from Case 5. Note that in all Cases 1,3 and 5,15 is always greater than «, if the

farmer clears a forest, but is always lower than 4in the no-deforestation case.

DISCUSSION

The model indicates that, because land is treated as an argument in the farmer’s utility
function, than the farmer also considers the cost of forest clearing in their optimal
consumption and forest clearing decisions. If the farmer’s optimal allocation for forest
clearing exceeds the minimum costs required and his total income (X) exceeds the

target income X, then he or she has the financial capacity to clear a forest.

The results of out numerical simulations, however, shows that capital accumulation (as
represented by the jump process) does not always result in the farmer having the
financial capacity to clear a forest. In the case of a risk- averting farmer, for example,
the farmer tends to put more money into his or her saving, while at the same time
setting his or her allocation for forest clearing to zero. One explanation for this is that
for a risk-averting farmer, forest clearing is seen as too-risky investment. Thus, he or
she prefers to have a “liquid” saving (such as cash and jewelry) which can be liquidated
quickly. Because this farmer is also prepared to sacrifice his or her consumption in
return for increased saving, the farmer represents the classical case of precautionary

saving. In other words, precautionary motives may work against further deforestation.

16



Another explanation for this result is that the model used here might have been too
restrictive, in the sense that it does not allow the control variables to vary according to
the jump process. But as discussed earlier, such an assumption is needed for both
tractability and empirical reasons . In addition to this, the (time-additive) CRRA utility
function used might have also contributed to this restrictiveness because the function
itself is restrictive despite its popularity. Furthermore, the value of & chosen, i.e.
& = 0.01 seems also to have caused this result. Unfortunately, such a low positive
value is needed in order to satisfy the constraint v; = 1,2 € (0,1)and v;= 3,4 £ [0,1).
Because of all these problems, the result should be viewed only as a special case that

might not be applicable under other circumstances.

The case of a risk-taking farmer gives further insight into farmers’ deforestation
behavior. This type of farmer is prepared to sacrifice consumption in order to invest in
forest clearing. This can be seen from the fact that if this farmer clears a forest, his or
her optimal consumption declines sharply to a level lower than the amount of money
allocated for forest clearing. Thus, as far as forest conservation is concerned, risk-
taking farmers are more likely to pose a threat to forest reserves than risk-averting
ones. The “cat-and-mouse” game discussed in Wibowo, D.H., Tisdell, C.A. and Byron,

R.N. (1997), provides empirical supports for this result.

The simulation, however, also shows that if risk-taking farmers optimize their income
allocation, capital accumulation does not necessarily give them financial capacity to
clear a forest. This is despite the fact that their total income exceeds a “target
boundary” representing the minimum level of income required to cover forest clearing
costs, consumption at the subsistence level and the minimum level of income-
generating expenses. If this result is compared to that of the Fokker-Planck modeling, it
is clear that consumption optimalization has raised the financial requirement for forest
clearing. In the Fokker-Planck modeling, if total income exceeds the target boundary,
then the forest clearing costs are already covered. This is because the consumption is
set at the subsistence level. With optimalization, the consumption moves above the
subsistence level, resulting in less money allocated for forest clearing costs. As a
result, the farmer’s optimal level of forest clearing expenses may fall below the costs of

forest clearing.
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While this result shows that there are cases where consumption optimalization
precludes deforestation, there are other cases where some farmers are prepared to
live at the subsistence level in order to own land later in life. This may on the surface
gives an indication that deforestation is caused more by sub-optimal consumption than
by the optimal one. However, such a finding may well result from our underestimation
of the importance of land in the farmer’s utility function. The farmer may in fact give a
much greater weight to land than previously assumed, in him or her being prepared to
sacrifice more consumption. Thus, the farmer’s choice to live at the subsistence level
may in fact be an optimal one. For this reason and other shortcomings discussed
earlier, the results of this paper should be seen only as a precursor to a more complex
deforestation modeling.

CONCLUSION

The ARMA(1,1) deforestation model of this paper has given further insight into farmers’
deforestation and capital accumulation behavior. Of particular importance here is how
farmers’ attitude towards risks (and their precautionary motives of saving) affect these
behaviors. A risk-taking farmer appears to be more likely to clear a forest than a risk-
averting one. The result also shows the case where consumption optimalization may
preclude further forest clearing. But given the limitations of this modeling, these results

should be seen as only a part of a much more complex deforestation behavior.
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